
Name of the Course
AP Computer Science A

The AP Computer Science A course is an introductory computer science course. A large part of the course involves developing the skills
to write programs or parts of programs that correctly solve specific problems. The course also emphasizes the design issues that make
programs understandable, adaptable, and when appropriate, reusable. At the same time, the development of useful computer programs
and classes is used as a context for introducing other important concepts in computer science, including the development and analysis of
algorithms, the development and use of fundamental data structures, and the study of standard algorithms and typical applications. In
addition an understanding of the basic hardware and software components of compute systems and the responsible use of these systems
are integral parts of the course.

The goals of the AP Compute Science course are comparable to those in the introductory sequence of courses for computer science majors
offered in college and university computer science departments. Students completing the AP Computer Science course will be able to:

o Design and implement computer-based solutions to problems in a variety of application areas.
o Use and implement commonly-used algorithms and data structures.
o Develop and select appropriate algorithms and data structures to solved problems.
o Code fluently in an object-oriented paradigm using the programming language Java. Students will be familiar with and be able to

use standard Java library classes from the AP Java subset.
o Read and understand a large program consisting of several classes and interacting objects. Students will be able to read and

understand a description of the design and development process leading to a program such as the AP Computer Science Case
Study (i.e. GridWorld).

o Identify the major hardware and software components of a computer system, their relationship to one another, and the roles of
these components within the system.

o Recognize the ethical and social implications of computer use.

This course spans 32 weeks requiring a minimum of 10 hours per week to read lessons and complete 70 programming assignments, 12
written assignments, four oral quizzes, and eight exams. The AP approved IMACS curriculum is used to develop fundamental
programming knowledge and skills, but enhanced instruction is provided to more thoroughly explore computer science concepts.

Resources:

• Institute of Mathematics and Computer Science (IMACS): Computer Science : Java Programming (www.eimacs.com).
• Institute of Mathematics and Computer Science (IMACS): Be Prepared for the AP Computer Sc ience Exam (www.eimacs.com).
• Litvin, & Litvin, Java Methods A & AB , Andover, MA. Skylight Publishing 2006.
• College Board, AP GridWorld Case Study and Student Manual .
• The BlueJ Integrated Development Environment (bluej.org).

In the following detailed syllabus, the Concepts column identifies the concepts from the AP Computer Science Topic Outline, the
Assignments column indicates assignments which address the concepts, and the IMACS Lessons column identifies specific IMACS lessons
that address the concepts. The combination of IMACS lessons and specific assignments permits coverage of all concepts in the Topic
Outline.

---Semester 1---

Module Scope and Sequence College Board Topic
Outline Objectives Assignments IMACS Lessons

1 Getting Started

Program Implementation
 Console	
 output	

(System.out.print/printl
n)- IIB3

 Download and install Java.
 Download and install BlueJ
 Print student information card.

2 Variables and
Expressions

Program Implementation
 Variable Declarations:

IIB2b
 Control – Sequential:

IIB4b

 Calculations with int variables.
 Calculations with double variables.
 English to Metric conversions

with mixed variable types.
 Calculate test grade averages.
 Convert currencies (dollar, pesos,

Variables and Arithmetic
Expressions
 Integers 1, 2, 3, 4, 5
 Doubles 1, 2
 Declaring and Assigning

Values to Variables 1

Program Analysis
 Identify and correct

errors: IIIB2
 Limitations of finite

representations (e.g.,	

integer	
 bounds,	

imprecision	
 of	
 floating-­‐
point	
 representations,	
 and	

round-­‐off	
 error): IIIH2

Standard Data Structures
 Simple data types (int and

double): IVA

yen, and Euro).  Casting 1, 2
 Pitfalls and Surprises 1, 2
 Programming Shortcuts 1,

2, 3

Practice Test #1 and #2

3 Strings and
User Input

Program Implementation
 Primitive types vs. objects:

IIB1
 Variable Declarations:

IIB2b
 Java library classes

(String): IIC

Program Analysis
 Identify and correct

errors: IIIB2

 Using Pseudocode
 Reading Source Code
 Interpreting a secret message

written in ASCII.
 Using String objects to display

song lyrics.
 Using escape characters to create

ASCII art.
 Exploring the Java API
 Decoding cell phone text message

phrases.
 Modify text message and currency

converter to accept user input with
Scanner class methods.

 Calculate overdue library fines.
 Oral Quiz (Modules 1 – 3).

Variables and Arithmetic
Expressions
 Strings 1, 2
 Concatenation 1, 2
 String Methods 1, 2, 3
 Displaying Messages 1
 Converting between

numbers and Strings

Practice Test #3

 Challenge Exam (Module 1 – 3).

4
Condition
Statements

Program Implementation
 Control – Conditional:

IIB4c

Program Analysis
 Representations of

numbers in different
bases: IIIH1

Standard Data Structures
 Simple data types

(boolean): IVA

 Practice base conversions (binary,
octal, decimal, and hexadecimal).

 Calculate food label minimum
daily reference values.

 Determine heart rate target zone
for safe exercise.

 Calculate basal metabolic heart
rate.

 Calculate body mass index.
 Create menus with error trapping.
 Calculate total daily energy

expenditure.

Variables and Arithmetic
Expressions
 integers 5
 booleans 1
 Relational Operators 1, 2
 Comparing Strings 1, 2, 3
 Logical Operators 1, 2, 3,

4

Program Control
 Conditional Statements 1,

2, 3, 4
 Blocks 1, 2

Practice Test #4 and 6

5
Loops

Program Implementation
 Control – Iteration: IIB4d

Program Analysis
 Identify boundary cases

and generate appropriate
data: IIIA2

 Employ techniques such
as using a debugger,
adding extra output
statements, or hand

 Simulate tossing a fair or biased
coin.

 Predict percentage of males and
females in a population.

 Create a guess my number game.
 Read text files.
 Calculate percentage of

male/female, male/male,
female/female family
combinations read from a sample
text file.

Program Control
 Iteration
 while Loops 1, 2, 3
 for loops 1, 2, 3

Practice Test #7 and #8

tracing code: IIIB3
 Identify and correct

errors: IIIB2
 Limitations of finite

representations (e.g.,	

integer	
 bounds,	

imprecision	
 of	
 floating-­‐
point	
 representations,	
 and	

round-­‐off	
 error): IIIH2

 Calculate outcomes of 3 ball
lottery combinations.

 Simulate dice probabilities with
nested loops.

 Predict odds of a bottle cap prize
using Monte Carlo Method.

 Generate random passwords with
different character sets.

 Discussion: Computer science
careers based on Univ. of
Washington videos.

6
Arrays

Program Implementation
 Control – Iteration: IIB4d

Program Analysis
 Understand and modify

existing code: IIIC
 Identify and correct

errors: IIIB2
 Limitations of finite

representations (e.g.,	

integer	
 bounds,	

imprecision	
 of	
 floating-­‐
point	
 representations,	
 and	

round-­‐off	
 error): IIIH2



Standard Data Structures
 Arrays (one dimension):

 Calculate average temperature and
total rainfall based on data read in
from a text file and choose output
in metric or English units.

 Format output using the printf
method.

 Calculate the Heat Index of a city
using temperature and humidity
data read in from a file.

 Calculate and display average,
maximum, and minimum
hurricane speed, pressure, and
category from an input file.

 Challenge Exam (Module 4 – 6).

Variables and Arithmetic
Expressions
 Arrays 1, 2, 3, 4, 5, 6, 7, 8
 doubles 2
Program Control
 for-each loops 1, 2

Practice Test #5 and #9

IVD

7 Methods

Program Implementation
 Top-down development:

IIA1b
 Procedural abstraction:

IIA1d
 Method declarations:

IIB2e
 Parameter declarations:

IB2f
 Control – Methods: IIB4a
 Java library classes (Math):

IIC

Program Analysis
 Limitations of finite

representations (e.g.,	

integer	
 bounds,	

imprecision	
 of	
 floating-­‐
point	
 representations,	
 and	

round-­‐off	
 error): IIIH2

 Calculate x,y coordinates on the
circumference of a circle.

 Convert to and from English to
metric units.

 Calculate the surface gravity on
each planet.

 Calculate individual weight on
each planet.

 Approximate the value of pi by
simulating throwing darts.

 Oral Quiz (Modules 4 – 7)

Methods
 The main Method 1
 Comments 1
 Multiple Variable

Declarations 1
 Static Methods 1, 2, 3
 Defining New Static

Methods 4, 5, 6, 7, 8

Practice Test #10

8
Introduction to
OOP and
Classes

Object-Oriented Program
Design
 Read and understand

problem description,
purpose, and goals: IA1

 Apply data abstraction and

 Identify examples of real-world
classes, objects, methods, and
attributes.

 Evaluate OOP, procedural, and
non-procedural styles.

Object-oriented
Programming Concepts
 OOP and Java
 Classes and Instances 1, 2,

3

encapsulation: IA2
 Design and implement a

class: IB1
 Apply	
 functional	

decomposition:	
 IB3

Program Implementation
 Object-oriented

development: IIA1a
 Encapsulation and

information hiding: IIA1c
 Primitive	
 types	
 vs.	

objects:	
 IIB1
 Class declarations: IIB2c
 Java class libraries

(ArrayList): IIC

Program Analysis
 Categorize errors:

compile-time, runtime,
logic: IIIB1

Standard Data Structures
 Classes: IVB
 Lists IVC
 Arrays IVD

 Calculate the fuel economy of the
family car in terms of miles per
gallon and gallons per mile.

 Calculate fuel economy for
multiple car objects.

 Project annual family fuel usage.
 Create program documentation

using javadocs.
 Calculate carbon dioxide emitted

from gasoline consumption.
 Calculate carbon dioxide footprint

based on family electricity use.
 Calculate net carbon dioxide

footprint based on levels of
recycling.

 Model the family carbon dioxide
footprint.

 Discussion: Computer Modeling
 Challenge Exam (Module 7 – 8).

Simple Objects
 Errors, Exceptions, and

Garbage Collection.
 Arrays of Objects 1, 2, 3
 ArrayLists 1, 2, 3, 4, 5, 6,

7, 8
 Person Class 1, 2, 3, 4, 5,

6, 7, 8
 Point Class 1, 2, 3, 4, 5, 6

Public Classes and the Java
Compiler
 Java Virtual Machine

Java Basics
 Overloading Methods 1, 2

Practice Test #11, #12, #13

9 Computer
Systems and

Standard Data Structures
 Arrays (2-d): IVD
Computing in Context

 Distinguish between analog and
digital computing.

 Conduct a family computer

Computing in Context
 Hardware
 Systems and System

History

 System reliability VIA

hardware and software inventory.
 Investigate computer pioneers and

devices of early computer history.
 Create time line of four

generations of computers and
correlate to historical/ cultural
events and personal family history.

 Calculate projectile trajectory table
based on launch angle and speed.

Software
Variables and Arithmetic
Expressions
 Arrays 1, 2, 3, 4, 5, 6, 7, 8

10 Semester Exam   Semester Exam  Review IMACS practice
tests.

---Semester 2---

11

Computing in
Context

Computing in Context
 System reliability: VIA
 Privacy: VIB
 Legal issues and

intellectual property: VIC
 Social and ethical

ramifications of computer
use: VID

 Create a family identify theft
prevention plan.

 Conduct a computer security
audit.

 Discuss online safety and
intellectual property issues.

 Download and install the
GridWorld Case Study.

12
Recursion

Program Implementation
 Understand	
 and	
 evaluate	

recursive	
 methods:IIB4e

GridWorld Case Study
 Part 1

 Discuss examples of real-world
recursion.

 Create Mondrian art using
recursion.

 Visualize the recursive leap of
faith (the Towers of Hanoi and
Martin and the Dragon)

 Translate piecewise functions into
recursive methods.

 Calculate Fibonacci numbers
recursively.

 Determine if a phrase is a
palindrome recursively.

 Collaboratively decode a secret
message.

 GridWorld Case Study Part 1 Do
You Know Set 1 and Exercises

 Oral Quiz (Modules 8 – 12)
 Challenge Exam Module 12

Java Basics
 Recursive Methods 1, 2, 3,

4

GridWorld Case Study
 Introduction 1, 2
 Running the Simulation
 A Peek at Some Code 1, 2,

3, 4, 5, 6

13 Inheritance and
Polymorphism

Object-Oriented Program
Design
 Read	
 and	
 understand	
 class	

specifications	
 and	

relationships	
 among	
 the	

classes	
 (“is-­‐a,”	
 “has-­‐a”	

relationships): IA3

 Understand and implement
a given class hierarchy: IA4

 Identify reusable

 Extend a box class to create a
cube class.

 Extend a triangle class to create
equilateral and isosceles classes.

 Create a class hierarchy to
represent simple terrains in a
graphics game.

 GridWorld Case Study Part 2 Do
You Know Set 2 and Exercises

Inheritance and
Polymorphism
 Extending Classes 1, 2, 3,

4
 Class Hierarchies 1, 2, 3, 4,

5, 6, 7
 Polymorphism 1, 2, 3, 4, 5,

6
 Overriding Methods 1, 2,

3, 4, 5, 6, 7

components from existing
code using classes and class
libraries: IA5

 Extend a given class using
inheritance: IB4

Program Implementation
 Java library classes (Object):

IIC

Program Analysis
 Test classes and libraries in

isolation: IIIA1
 Perform integration testing:

IIIA3
 Extend existing code using

inheritance: IIID

Standard Data Structures
 Classes: IVB

GridWorld Case Study
 Part 2

 IMACS Project 1 and 2
 Practice Test #15

GridWorld Case Study
 Overview of Classes 1, 2
 Locations 1, 2, 3, 4
 Grid<E> Interface

14
Classes
Revisited

Object-Oriented Program
Design
 Apply functional

decomposition: IB4

Program Implementation

 Calculate prime numbers.
 Perform a frequency analysis on a

passage of text.
 Translate a text message into

Morse code.
 Encode and decode a secret

OOP - Class Definitions
Revisited
 Multiple Constructors 1, 2
 Overloaded Instance

Methods
 Integer and Double

 Constant declarations:
IIB2a

 Java library classes (Integer
and Double): IIC

GridWorld Case Study
 Part 3: p. 16-19

message using a Caesar shift.
 Encode and decode a message

using a randomly generated cipher
alphabet.

 Discussion: Technology and
national security.

 GridWorld Case Study -Do You
Know Set 3

 Challenge Exam Modules 13 – 14.

 public and private 1, 2
 Class Methods 1, 2, 3

Class Variables and
Constants

 final Block Variables
 Object aliasing
 Simple Objects
 Random and Math.

Random
 Using this

GridWorld Case Study
 Actors 1, 2
 Rocks
 Flowers
 Bugs 1, 2
 Critters 1, 2

15
Abstraction and
Interfaces

Program Implementation
 Interface declarations:

IIB2d
 Java library classes (List,

Comparable): IIC
Standard Data Structures
 Classes: IVB
 Lists: IVC

GridWorld Case Study
Part 3: p 20-28

 Create abstract classes for
homework assignments in
different subjects.

 Implement an interface to process
homework assignments in
different subjects.

 Implement Comparable <T> to
process homework assignments in
different subjects.

 Use an interface and abstract
classes to process an inventory of
products.

OOP - Abstractions
 Abstract Classes 1, 2, 3
 Interfaces 1, 2, 3, 4, 5, 6, 7
 Comparable <T>

Interface 1, 2, 3, 4, 5, 6, 7,
8

Data Structures
 Lists: The List <E>

Interface

GridWorld Case Study

 GridWorld Case Study – Do You
Know Set 4, 5, and 6 and Group
Activity Questions.

 Challenge Exam Module 15

 Extending GridWorld
Classes.

 Introduction 1, 2
 Extending the Critter

Class 1, 2, 3, 4

16
Algorithms

Object-Oriented Program
Design
 Choose appropriate data

representation and
algorithms: IB2

Standard Data Structures
 Lists: IVC
 Arrays: IVD

Standard Algorithms
 Traversals: VA1
 Insertions: VA2
 Deletions: VA3

GridWorld Case Study
 Part 4: p 29-31

 Traverse a set of election results,
calculate the total votes, and print
an updated report.

 Traverse a set of election results,
replace vote counts, calculate the
new results, and print an updated
report.

 Traverse a set of election results,
insert write-in candidates, calculate
the new results, and print an
updated report.

 Traverse a set of election results,
delete incorrect data, calculate the
new results, and print an updated
report.

 Process a set of student grades
using traversal, insertion,
replacement, and deletion
methods.

 GridWorld Case Study – Do You
Know Set 7

Algorithms
 Algorithms 1 ,2 , 3
 Traversals
 Replacements
 Insertions 1, 2, 3
 Deletions

GridWorld Case Study
 Extending the Bug Class

1, 2, 3, 4, 5

17 Sorting

Object-Oriented Program
Design
 Choose appropriate data

representation and
algorithms: IB2

Program Implementation
 Understand	
 and	
 evaluate	

recursive	
 methods:IIB4e

Standard Algorithms
 Selection Sort: VC1
 Insertion Sort: VC2
 Mergesort: VC3

GridWorld Case Study
 Part 4: p 32-34

 Use an insertion sort to arrange a

movie list in ascending or
descending order by title, release
year, or studio.

 Use a selection sort to arrange a
movie list in ascending or
descending order by title, release
year, or studio.

 Use a mergesort to arrange a
movie list in ascending or
descending order by title, release
year, or studio.

 GridWorld Case Study – Do You
Know Set 8.

Algorithms
 Insertion Sort 1, 2, 3, 4, 5,

6
 Selection Sort 1, 2, 3, 4, 5,

6, 7
 Merge Sort 1, 2, 3, 4, 5, 6

GridWorld Case Study
 Extending the Actor Class

1, 2

18 Searching

Standard Algorithms
 Sequential Search: VB1
 Binary Search: VB2

GridWorld Case Study
 Part 4: p 34-35

 Conduct a sequential search for
specific titles, release year, or artist
in a collection of music CDs.

 Conduct a binary search for
specific titles, release year, or artist
in a collection of music CDs.

 Use binary and sequential searches
to locate specific individuals in a
contact list by name, relationship,
birthday, phone number, or email
address.

 GridWorld Case Study – Do You

Searching
 Sequential Search 1, 2
 Binary Search 1, 2, 3, 4, 5

GridWorld Case Study
 Extending GridWorld

Classes/Choosing a
Superclass 1, 2, 3, 4, 5, 6, 7

Know Set 9.
 Challenge Exam Module 17 and

18.
 Oral Quiz (Modules 13 – 18).

19 Program
Analysis

Program Analysis
 Identify boundary cases and

generate appropriate test
data: IIIA2

 Perform integration testing:
IIIA3

 Understand runtime
exceptions: IIIE1

 Pre- and post-conditions:
IIIF1

 Assertions: IIIF2
 Informal comparisons of

running times: IIIG1
 Exact calculation of

statement execution counts:
IIIG2

GridWorld Case Study
 Part 4: p 35-38

 Handle exceptions appropriately
when processing a set of student
grades.

 GridWorld Case Study - Exercises

Algorithms/Program
Analysis
 Assertions and Exceptions

1, 2, 3, 4

GridWorld Review
 Practice Test #27

20 AP Exam
Review

 Exam Review
 Teacher lead reviews.
 Student self study with Barron’s or

other AP Exam Review books.

IMACS Be Prepared for the
AP Computer Science
Exam
 Exam Format and

 Practice test with the 2009 AP
Computer Science Exam.

Materials
 The Java Subset
 Grading
 Exam Taking Hints
 Java Features
 Program Design and OOP

Concepts
 Algorithms
 GridWorld Case Study
 Past Free Response

Questions
 Past Free Response

Questions
 A Exam 1, 2

APCS Scoring Component Description Modules within Course

[C1]
The course teaches students to design and

implement computer-based solutions to
problems

Modules 2 – 9, 12 – 19

[C2]
The course teaches students to use and
implement commonly used algorithms.

5, 6, 8, 9, 12, 16, 17, 18

[C3]
The course teaches students to use and

implement commonly-used data structures.

6, 8, 9 , 15, 16, 17, GridWorld (Mod 11 – 19)

[C4]

The course teaches students to select
appropriate algorithms and data structures to

solve problems.

12, 16, 17, 18

[C5]

The course teaches students to code fluently
in an object-oriented paradigm using the

programming language Java.

8, 13, 14, 15, GridWorld (Mod 11 – 19)

[C6]

The course teaches students to use standard
Java library classes from the AP Java subset
delineated in Appendices A and B of the AP

Computer Science Course Description.

1 – 9, 12 – 19

[C7]

The course teaches students to read and
understand a large program consisting of
several classes and interacting objects. In

particular, the course enables students to read
and understand the current AP Computer

Science Case Study posted on AP Central.

GridWorld Case Study present in Modules
11 - 19

[C8]

The course teaches students to recognize the
ethical and social implications of computer

use.

5, 8, 9, 11, 14

